
- #INSTALLING PANDAS IN THONNY INSTALL#
- #INSTALLING PANDAS IN THONNY SERIES#
- #INSTALLING PANDAS IN THONNY WINDOWS#
df.groupby(col1) | Returns the mean of the values in col2, grouped by the values in col1ĩ. df.groupby() | Returns groupby object for values from multiple columnsĨ. df.groupby(col) | Returns a groupby object for values from one columnħ. df.sort_values(,ascending=) |Sort values by col1 in ascending order then col2 in descending orderĦ. df.sort_values(col2,ascending=False) |Sort values by col2 in descending orderĥ. df.sort_values(col1) | Sort values by col1 in ascending orderĤ. df > 0.5] |Rows where the column col is greater than 0.5Ģ. Use these commands to filter, sort, and group your data.ĭ 1. df.rename(index=lambda x: x + 1) | Mass renaming of index df.set_index('column_one') |Change the index 15. df.rename(columns=) |Selective renamingġ4. df.rename(columns=lambda x: x + 1) |Mass renaming of columnsġ3.

s.replace(1,'one') | Replace all values equal to 1 with 'one'ġ1.
#INSTALLING PANDAS IN THONNY SERIES#
s.astype(float) | Convert the datatype of the series to floatġ0.

s.fillna(s.mean()) | Replace all null values with the meanĩ. df.fillna(x) | Replace all null values with xĨ. df.dropna(axis=1,thresh=n) |Drop all rows have have less than n non null valuesħ. df.dropna(axis=1) | Drop all columns that contain null valuesĦ. df.dropna() | Drop all rows that contain null valuesĥ. pd.isnull() | Checks for null Values, Returns Boolean Arrrayģ. Use these commands to perform a variety of data cleaning tasks.ġ. df] | Returns columns as a new DataFrameĤ. df |Returns column with label col as SeriesĢ. Use these commands to select a specific subset of your data.ġ. df.apply(pd.Series.value_counts) |Unique values and counts for all columns s.value_counts(dropna=False) |View unique values and counts 7. df.describe() | Summary statistics for numerical columnsĦ.

df.info() | Index, Datatype and Memory informationĥ. df.tail(n) | Last n rows of the DataFrameĤ. df.head(n) |First n rows of the DataFrameĢ. Use these commands to take a look at specific sections of your pandas DataFrame or Series.ġ. index = pd.date_range('0', periods=df.shape) |Add a date index pd.Series(my_list) | Create a series from an iterable my_listģ. pd.DataFrame(np.random.rand(20,5)) |5 columns and 20 rows of random floatsĢ. These commands can be useful for creating test segments. df.to_json(filename) |Write to a file in JSON format df.to_sql(table_name, connection_object) |Write to a SQL table. df.to_excel(filename) | Write to an Excel fileģ. Use these commands to export a DataFrame to CSV. pd.DataFrame(dict) |From a dict, keys for columns names, values for data as lists pd.read_clipboard() | Takes the contents of your clipboard and passes it to read_table() 8. pd.read_html(url) | Parses an html URL, string or file and extracts tables to a list of dataframesħ. pd.read_json(json_string) |Read from a JSON formatted string, URL or file.Ħ. pd.read_sql(query, connection_object) |Read from a SQL table/databaseĥ. pd.read_excel(filename) | From an Excel fileĤ. pd.read_table(filename) | From a delimited text file (like TSV)ģ. Use these commands to import data from a variety of different sources and formats.

Run the given statement in Command prompt.
#INSTALLING PANDAS IN THONNY WINDOWS#
If you want to use a specific version of Python in Windows cmd, just add the path of that Python in System Variables.
#INSTALLING PANDAS IN THONNY INSTALL#
Whichever Python you wand to use and install the pandas. This will install the pandas in the same directory. C:Program FilesAnaconda3libsite-packages (python 3.6)pip install pandas To make sure that you're using the same pip as your python, execute the pip with whole path from python directory i.e. The Error is getting because you have not installed the Library. To make use of the commands listed below, you'll need to first import the relevant libraries like so: import pandas as pd In this cheat sheet, we'll use the following shorthand: Store the cleaned, transformed data back into a CSV, other file or database Plot bars, lines, histograms, bubbles, and more.Ĥ. Visualize the data with help from Matplotlib. Clean the data by doing things like removing missing values and filtering rows or columns by some criteriaģ. * What does the distribution of data in column C look like?Ģ. * What's the average, median, max, or min of each column? Calculate statistics and answer questions about the data, like Pandas will extract the data from that CSV into a DataFrame a table, basically, then let you do things like:ġ. Through pandas, you get acquainted with your data by cleaning, transforming, and analyzing it.įor example, say you want to explore a dataset stored in a CSV on your computer. This tool is essentially your data is home. Pandas has so many uses that it might make sense to list the things it can't do instead of what it can do.
